PROGRAMMING THE REAL WORLD

PETER CHRISTENSEN <u>HTTP://PCHRISTENSEN.COM</u> @CHRISTENSENP

Why Do We Love Programming?

- Challenge of problem solving
- Creating something that didn't exist before
- Seeing something work
- Show off our abilities
- ...but everybody loves those feelings!

Artists...

Athletes...

Young and old...

Politicians... (no, really!)

Engineers...

Fashion designers...

Software is Different

Software is Different

- Something about creating with software is qualitatively different
- How many pottery billionaires have you heard of lately?
- How many other young businesses have hundreds of millions of users?

Software is design-only, with no marginal cost to reproduce

Software has a lower barrier to participation. What is the "Hello World" for surgery?

Available on the App Store

http://www.|

Distribution is easier and cheaper

DEFU

Tools and libraries let us abstract away non-core tasks

Communities and contribution tools allow us to build on the best work of others

It's Not Just For Software Anymore

- Costs for hardware of all sorts are falling
- Resources for learning electronics and hardware are better than ever and improving
- The internet makes showing off your creations easier than ever
- Maker Faire the biggest show and tell on Earth - <u>http://makerfaire.com/</u>

Maker Faire

Robot bugs that skitter, made with \$10 of electronics

Maker Faire

Real-time visualization of dancing <u>https://github.com/benMcChesney/ofxOpenVJ</u>

Maker Faire

250 Fish and Lobsters Singing Beethoven's 9th <u>http://www.sashimitabernaclechoir.org/</u>

Maker Faire Coming Soon to a City Near You!

http://makerfaire.com/map/

New tools for design and experimentation Left: <u>http://upverter.com</u> for designing circuits Right: 3D printer for prototyping complex shapes

Using an IR Remote with a Raspberry Pi Media Center

Control your Raspberry Pi Media Centre with an IR Remote

In this tutorial, you will learn how to use an Infrared remote with a Raspberry Pi configured as a media center. The IR receiver is attached to the GPIO connector on the Raspberry Pi.

Tools and resources for learning L: Adafruit tutorials <u>http://learn.adafruit.com/</u> C: LightUp augmented reality <u>http://www.lightup.io/</u> R: littleBits kits <u>http://littlebits.com/</u>

DIY Projects Left: Roominate DIY Dollhouse Kits <u>http://www.roominatetoy.com/</u> Right: Retro Gaming with Raspberry Pi <u>http://learn.adafruit.com/retro-gaming-with-raspberry-pi</u>

Software Enables Intelligent Interaction With *Abstract* Things

Hardware Enables Intelligent Interaction With *Physical* Things

Hardware Becoming Software

"Hackers love to build hardware, and customers love to buy it. So if the ease of shipping hardware even approached the ease of shipping software, we'd see a lot more hardware startups."

http://www.paulgraham.com/hw.html

Hardware Becoming Software

- Shrinking marginal cost cheaper hardware
- Broad participation Maker movement
- Distribution Kickstarter, Shopify
- Abstract non-core tasks kits, more components
- Community and collaboration

Arduino

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. It's intended for artists, designers, hobbyists, and anyone interested in creating interactive objects or environments. - http://www.arduino.cc/

Arduino

● ○ ○ _01_Blink Arduino 1.0.5		
		ø
_01_Blink		•
/* Blink Turns on an LED on for one	e second, then off for one second, repeatedly.	
This example code is in th */	ne public domain.	
// Pin 13 has an LED connect // give it a name: int led = 7;	ed on most Arduino boards.	
<pre>// the setup routine runs on void setup() { // initialize the digital pinMode(led, OUTPUT); }</pre>	nce when you press reset: pin as an output.	
<pre>// the loop routine runs ove void loop() { digitalWrite(led, HIGH); delay(2000); digitalWrite(led, LOW); delay(2000); }</pre>	er and over again forever: // turn the LED an (HIGH is the voltage level) // wait for a second // turn the LED off by making the voltage LOW // wait for a second	
	^	A.7
1	Arduino Uno on /dev/tty.usbmodem1	411

Arduino IDE

- Free, multiplatform
- Includes examples with documentation
- Compiles code and loads as firmware to any Arduino-compatible bord

Arduino

Arduino Uno

A family of compatible boards with different options for: extensibility, features, size, power, cost,

- Electrons flow from negative to positive (current)
- If there's no path, the flow stops (circuit)
- You can put stuff in the circuit to use, alter, or react to the current
- Each component is like a function with inputs and outputs, and they chain together

- Wire connect 2 components, function argument
- Battery provides current, run the program

• LED - side effect, output

http://electronicsclub.info/circuitsymbols.htm

 On-off Switch boolean variable

2-Way Switch - if statement

http://electronicsclub.info/circuitsymbols.htm

- Breadboard for prototyping
- Conductive strips underneath holes make easy connections
- Like a REPL or console

http://electronicsclub.info/circuitsymbols.htm

Wiring an Arduino circuit: schematic and pic

http://learn.adafruit.com/category/learn-arduino

- Arduino code has 2 requires functions
- void setup() run once when the board is powered up
- void loop() runs repeatedly until the board is powered down
- Other functions allowed for clarity

```
/*
 Blink
  Turns on an LED on for one second, then off for one second, repeatedly.
  This example code is in the public domain.
 */
// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;
// the setup routine runs once when you press reset:
void setup() {
  // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
// the loop routine runs over and over again forever:
void loop() {
  digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
                 // wait for a second
  delay(2000);
  digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
  delay(2000);
                          // wait for a second
```

What About Javascript?

- Javascript rose to new popularity coincident with the Maker movement
- Maker projects use the web
- Projects made by non-developers, tinkerers, engineers smart people new to software
- Hardware is event-based, so JS is a good fit
- Javascript is a kind language for beginners single numeric type, familiar syntax, type conversions

Libraries

- node-serialport <u>https://github.com/</u> voodootikigod/node-serialport
- Firmata common firmware protocol for controlling microcontroller boards <u>http://firmata.org/</u>

Libraries - JohnnyFive

```
button = new five.Button(8);
```

```
// "down" the button is pressed
button.on("down", function() {
    console.log("down");
```

```
});
```

```
// "hold" the button is pressed for specified time.
// defaults to 500ms (1/2 second)
button.on("hold", function() {
   console.log("hold");
});
```

```
// "up" the button is released
button.on("up", function() {
   console.log("up");
});
```

Firmata library with component behavior events <u>https://github.com/rwldrn/johnny-five</u>

Enabling Libraries - JohnnyFive

http://www.youtube.com/watch?v=gFiL4xVINdw

NodeBots Hack Hardware With JS

NodeBots: a full day event where JS developers team up and use soldering guns and parts nearby to create amazing robotic devices.

http://nodebots.io/

Miniature Hardware

Raspberry Pi Beagle Bone Black

Small, inexpensive general purpose computers with ARM chips, USB and HDMI ports, run Linux and any software

Where to Buy?

http://www.adafruit.com/

http://sparkfun.com/

http://www.hobbytronics.co.uk/

\$\$! €€! (?)

- Not expensive to start: ~\$30 for Arduino,
 ~\$45 for Raspberry Pi or BeagleBone
- Kits for < \$100
- Whole pile of electronic parts and computers for < \$200

\$\$! €€! (?)

- Prototyping parts are reusable; you only incur more costs when you:
 - break stuff (it happens)
 - want new features (motors, sensors, etc)
 - want to build more because you designed something useful

Advanced Electronic Design

 Designs printed on a PCB (printed circuit board)

 Components assembled into finished hardware

Advanced Electronic Design

- Designed circuits can be assembled by lots of manufacturers
- Upverter has manufacture integrated into their workflow
- DIY tools are developing, improving

I Don't Know Electronics, What Can I Do?

What Can I Do?

- Find a hardware project you're interested in
 - Maker Faire, Kickstarter, Meetups, etc
- Add to software, improve software practices
 - Source control, abstraction, testing, etc
- Miscellaneous contributions documentation, etc

What Can I Do?

- Build demo apps on hardware APIs
- Example: moj.io
 - Plugs into car diagnostic port
 - Sends geocoded logs over cellular network
 - Expose API for building car data apps

How I Got Into Hardware

How I Got Into Hardware

- No background except for 1 college class 15 yrs ago
- Went to YC Hardware hackathon in Feb '13
- Got little done because I had so many basic questions
- Liked the project and team so I continued working on a prototype for Maker Faire
- I wrote software for a hardware project, so I contributed and learned a lot without slowing down the project

Tempo Automation

Here's the demo - it assembles circuit boards

http://www.youtube.com/watch?v=-jsQF-xFdJM https://www.facebook.com/video/embed? video_id=4184537549975

OpenROV

- Started by guys looking for "return on adventure"
 - Sold > 100 kits on Kickstarter
 - Open, worldwide community

http://www.youtube.com/watch?v=GVp0zeH0H3Q

OpenROV

- Node.js server serves cockpit web page, translates input into motor commands through Arduino
- I didn't buy a kit, so I can't write or test software for it
- I take and post notes from monthly dev calls, helps community

Concluding Thoughts

- What would you make if you weren't stuck inside the computer or the internet?
- What objects do you interact with daily that you could make smarter?
- What would you do if you could program the real world?

You are only limited by your imagination.

What will YOU

make?